Закон сохранения энергии краткое определение. Закон сохранения энергии

Суммарная механическая энергия системы () — это энергия механического энергия и взаимодействия:

где — кинетическая энергия тела; — потенциальная энергия тела.

Закон сохранения энергии создан в результате обобщения эмпирических данных. Идея такого закона принадлежала М.В. Ломоносову, который представил закон сохранения материи и движения. Количественно закон сформулировали немецкий врач Ю. Майер и ученый — естествоиспытатель. Гельмгольц.

Формулировка закона сохранения механической энергии

Если в системе тел действуют исключительно силы, которые являются консервативными, то суммарная механическая энергия остается неизменной во времени. (Консервативными (потенциальными) называют силы, работа которых не зависит: от вида траектории, точки к которой приложены данные силы, закона, который описывает движение этого тела, и определено исключительно начальной и конечной точками траектории движения тела (материальной точки)).

Механические системы, в которых действуют исключительно консервативные силы, называют консервативными системами.

Еще одной формулировкой закона сохранения механической энергии считают следующую:

Для консервативных систем суммарная механическая энергия системы величина неизменная.

Математическая формулировка закона сохранения механической энергии имеет вид:

Значение закона сохранения механической энергии

Данный закон связан со свойством однородности времени. Что означает инвариантность законов физики относительно выбора начала временного отсчета.

В диссипативных системах механическая энергия уменьшается, так как происходит преобразование механической энергии в немеханические ее виды. Такой процесс называют рассеянием (диссипацией) энергии.

В консервативных системах полная механическая энергия постоянна. Происходят переходы кинетической энергии в потенциальную и наоборот. Следовательно, закон сохранения механической энергии отражает не только сохранение энергии количественно, но указывает на качественную сторону взаимного превращения разных форм движения друг в друга.

Закон сохранения и превращения энергии является фундаментальным законом природы. Он выполняется и в макро и микро мире.

Примеры решения задач

ПРИМЕР 1

Задание Тело массы упало с высоты на площадку, прикрепленную к пружине с коэффициентом упругости (рис.1). Каково смещение пружины ()?


Решение За ноль потенциальной энергии примем положение площадки до падения на нее груза. Потенциальная энергия тела, поднятого на высоту ,переходит в потенциальную энергию сжатой пружины. Запишем закон сохранения энергии системы тело — пружина:

Получили квадратное уравнение:

Решая квадратное уравнение получим:

Ответ

ПРИМЕР 2

Задание Объясните, почему говорят о всеобщем характере закона сохранения энергии, но известно, что при наличии неконсервативных сил в системе механическая энергия убывает.
Решение Если сил трения в системе нет, то закон сохранения механической энергии выполняется, то есть полная механическая энергия не изменяется во времени. При действии сил трения, механическая энергия убывает, но при этом увеличивается внутренняя энергия. С развитием физики как науки были обнаружены новые виды энергии (световая энергия, электромагнитная энергия, химическая энергия, ядерная энергия). Было выяснено, что если над телом совершается работа, то она равна приращению суммы всех видов энергии тела. Если тело само совершает работу, над другими телами, то эта работа равна убыли суммарной энергии этого тела. Все виды энергии переходят из одного вида в другой. Причем, при всех переходах суммарная энергия остается неизменной. В этом и состоит всеобщность закона сохранения энергии.

Закон сохранения энергии, для любой замкнутой системы полная механическая энергия остается постоянной при любых взаимодействиях тел внутри системы. То есть энергия не возникает из ниоткуда и в никуда не исчезает. Она лишь переходит из одной формы в другую. Это справедливо для замкнутых систем, в которых энергия не поступает из вне, и не уходит из системы наружу.

Приближённым примером замкнутой системы может служить падение груза относительно большой массы, и малых размеров на землю с небольшой высоты. Допустим, что груз зафиксирован на некоторой высоте. При этом он обладает потенциальной энергией. Эта энергия зависит от его массы и высоты, на которой находится тело.

Формула 1 - Потенциальная энергия.


Кинетическая энергия груза при этом равна нулю, так как тело находится в состоянии покоя. То есть скорость тела равна нулю. При этом на систему не действуют никакие сторонние силы. В данном случае для нас важна только сила тяжести, действующая на груз.

Формула 2 - Кинетическая энергия.


Далее тело отпускают, и оно переходит в свободное падение. При этом его потенциальная энергия уменьшается. Так как уменьшается высота тела над землей. Также увеличивается кинетическая энергия. Вследствие того что тело начало двигаться и приобрело некоторую скорость. Груз движется к земле с ускорением свободного падения, а значит с прохождением некоторого расстояния, его кинетическая энергия увеличивается, вследствие увеличения скорости.

Рисунок 1 - Свободное падение тела.


Так как груз малыми размерами то сопротивление воздуха достаточно мало и энергия на его преодоление мала и ею можно пренебречь. Скорость движения тела не высока и на малом расстоянии не достигает момента, когда она уравновешивается трением о воздух и ускорение прекращается.

В момент столкновения с землей кинетическая энергия максимальна. Так как тело обладает максимальной для него скоростью. А потенциальная энергия равна нулю, так как тело достигло поверхности земли и высота равна нулю. То есть что происходит, максимальная потенциальная энергия в верхней точке, по мере движения переходит в кинетическую, которая в свою очередь достигает максимума в нижней точке. Но сумма всех энергий в системе за время движения остается постоянной. Насколько уменьшилась потенциальная энергия, настолько увеличилась кинетическая.

Формула 3 - Суммарная энергия системы.

Теперь если к грузу приделать парашют. Тем самым мы увеличим силу трения о воздух, и система перестает быть замкнутой. Как и раньше груз движется к земле, но его скорость остается постоянной. Так как сила тяжести уравновешивается силой трения о воздух поверхностью парашюта. Таким образом, потенциальная энергия уменьшается с уменьшением высоты. А кинетическая, на протяжении всего падения остается постоянной. Поскольку масса тела и его скорость неизменна.

Рисунок 2 - Замедленное падение тела.


Излишки потенциальной энергии, возникающие при уменьшении высоты тела, расходуются на преодоление сил трения о воздух. Тем самым снижая его конечную скорость снижения. То есть потенциальная энергия переходит в тепловую, нагревающую поверхность парашюта и окружающий воздух.

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Один из наиболее важных законов, согласно которому физическая величина - энергия сохраняется в изолированной системе. Этому закону подчиняются все без исключения известные процессы в природе. В изолированной системе энергия может только превращаться из одной формы в другую, но ее количество остается постоянным.

Для того, чтоб понять что же представляет из себя закон и откуда это получается возьмем тело массой m, которое уроним на Землю. В точке 1 тело у нас находится на высоте h и покоится (скорость равна 0). В точке 2 тело тело имеет некоторую скорость v и находится на расстоянии h-h1. В точке 3 тело имеет максимальную скорость и оно почти лежит на нашей Земле, то есть h=0

В точке 1 тело имеет только потенциальную энергию, так как скорость тела равно 0,так что полная механическая энергия равна.

После того как мы тело отпустили, оно стало падать. При падении потенциальная энергия тела уменьшается, так как уменьшается высота тела над Землей, а его кинетическая энергия увеличивается, так как увеличивается скорость тела. На участке 1-2 равном h1 потенциальная энергия будет равна

А кинетическая энергия будет равная в тот момент ( - скорость тела в точке 2):

Чем ближе тело становится к Земле, тем меньше его потенциальная энергия, но в тот же момент увеличивается скорость тела, а из-за этого и кинетическая энергия. То есть в точке 2 работает закон сохранения энергии: потенциальная энергия уменьшается, кинетическая растет.

В точке 3 (на поверхности Земли) потенциальная энергия равна нулю (так как h = 0), а кинетическая максимальна (где v3 - скорость тела в момент падения на Землю). Так как , то кинетическая энергия в точке 3 будет равна Wk=mgh. Следовательно, в точке 3 полная энергия тела W3=mgh и равна потенциальной энергии на высоте h. Конечная формула закона сохранения механической энергии будет иметь вид:

Формула выражает закон сохранения энергии в замкнутой системе, в которой действуют только консервативные силы: полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию и обратно.

В Формуле мы использовали.

Энергия – скалярная величина. В системе СИ единицей измерения энергии является Джоуль.

Кинетическая и потенциальная энергия

Различают два вида энергии – кинетическую и потенциальную.

ОПРЕДЕЛЕНИЕ

Кинетическая энергия – это энергия, которой тело обладает вследствие своего движения:

ОПРЕДЕЛЕНИЕ

Потенциальная энергия – это энергия, которая определяется взаимным расположением тел, а также характером сил взаимодействия между этими телами.

Потенциальная энергия в поле тяготения Земли – это энергия, обусловленная гравитационным взаимодействием тела с Землей. Она определяется положением тела относительно Земли и равна работе по перемещению тела из данного положения на нулевой уровень:

Потенциальная энергия – энергия, обусловленная взаимодействием частей тела друг с другом. Она равна работе внешних сил по растяжению (сжатию) недеформированной пружины на величину :

Тело может одновременно обладать и кинетической, и потенциальной энергией.

Полная механическая энергия тела или системы тел равна сумме кинетической и потенциальной энергий тела (системы тел):

Закон сохранения энергии

Для замкнутой системы тел справедлив закон сохранения энергии:

В случае, когда на тело (или систему тел) действуют внешние силы, например, закон сохранения механической энергии не выполняется. В этом случае изменение полной механической энергии тела (системы тел) равно внешних сил:

Закон сохранения энергии позволяет установить количественную связь между различными формами движения материи. Так же, как и , он справедлив не только для , но и для всех явлений природы. Закон сохранения энергии говорит о том, что в энергию в природе нельзя уничтожить так же, как и создать из ничего.

В наиболее общем виде закон сохранения энергии можно сформулировать так:

  • энергия в природе не исчезает и не создается вновь, а только превращается из одного вида в другой.

Примеры решения задач

ПРИМЕР 1

Задание Пуля, летящая со скоростью 400 м/с, попадает в земляной вал и проходит до остановки 0,5 м. Определить сопротивление вала движению пули, если ее масса 24 г.
Решение Сила сопротивления вала – это внешняя сила, поэтому работа этой силы равна изменению кинетической энергии пули:

Так как сила сопротивления вала противоположна направлению движения пули, работа этой силы:

Изменение кинетической энергии пули:

Таким образом, можно записать:

откуда сила сопротивления земляного вала:

Переведем единицы в систему СИ: г кг.

Вычислим силу сопротивления:

Ответ Сила сопротивления вала 3,8 кН.

ПРИМЕР 2

Задание Груз массой 0,5 кг падает с некоторой высоты на плиту массой 1 кг, укрепленную на пружине с коэффициентом жесткости 980 Н/м. Определить величину наибольшего сжатия пружины, если в момент удара груз обладал скоростью 5 м/с. Удар неупругий.
Решение Запишем для замкнутой системы груз+плита. Так как удар неупругий, имеем:

откуда скорость плиты с грузом после удара:

По закону сохранения энергии полная механическая энергия груза вместе с плитой после удара равна потенциальной энергии сжатой пружины:

В 1018 г.Эмми Нётер, немецкий физик и математик, доказал фундаментальную теорему физики, которую в упрощённом виде можно сформулировать так: каждому свойству симметрии пространства и времени соответствует свой закон сохранения. В частности, как следует из теоремы (теоремы Нётер ) однородности времени должен соответствовать закон сохранения энергии: при любых процессах, происходящих в замкнутой консервативной системе, её полная механическая энергия не изменяется.

Элементарная работа потенциальных сил равна взятому с обратным знаком эле­ментарному изменению потенциальной энергии dA= -dE п. Так как иных сил в системе нет, то та же элементарная работа равна элементарному изменению кинетической энергии dA= dE к. По­этому можем записать

dE к + dE п = 0,

d(Е к + Е п) = 0. (2.34) Обозначим

Е к + Е п = Е (2.35)

здесь Е - полная механическая энергия . Из (2.39) видим, что полная механическая энергия остается постоянной:

При решении задач в механике удобно пользоваться законом сохранения энергии в виде

ΔE к = ΔE п или Е к1 + Е п1 = Е к2 + Е п2 . (2.37) здесь Е к1 и Е п1 , - соответственно кинетическая и потенциальная энергии тела (системы) в начальном положении; Е к2 и Е п2 - то же для конечного положения тела (системы).

Закон сохранения энергии в механике является частным случаем более общего закона сохранения и превращения энергии, который является одним из основных законов природы.

В земных условиях невозможно указать консервативную систему, хотя бы потому, что всегда действуют силы трения и сопротивления (диссипативные силы), происходит уменьшение механической энергии (диссипация энергии). В этом случае механическая энергия уже не будет оставаться постоянной; она будет изменяться, и её изменение, как это видно из формулы (2.38) будет складываться из изменения кинетической энергии ΔE к, и изменения потенциальной энергии ΔE п:

ΔЕ= ΔE к,+ ΔE п.. (2.38)

Учитывая соотношения (2.27) и (2.32), выражающие теорему о кинетической и потенциальной энергиях, последнее равенство можно переписать так:

ΔЕ= А пот +А дис -А пот = А дис. (2.39)

Изменение полной механической энергии неконсервативной системы равно сумме работы диссипативных сил .

Так как диссипативные силы направлены противоположно перемещению, то работа этих сил отрицательна и, следовательно, механическая энергия системы уменьшается.

§2.9 Столкновение тел

Столкновение тел – одно из наиболее часто встречающихся явлений в жизни. При столкновении происходит их кратковременное взаимодействие, сопровождающееся как деформацией, так и изменением направления их движения. Особый интерес представляют два вида столкновений – абсолютно упругий и абсолютно неупругий удары.

Простейшим видом соударения является центральный удар тел. При этом ударе тела движутся только поступательно, их скорость направлена по прямой, соединяющей центры масс.

Абсолютно неупругий удар . Так называется столкновение двух тел, в результате которого они соединяются вместе и движутся дальше как одно целое. Например, столкновение слипающихся пластилиновых шариков; попадание ружейной пули в ящик с песком и т.д.

Пусть один из шаров массойm 1 догоняет другой массой m 2 (рис. 2.12).

Можно записать

m 1 υ 1 +m 2 υ 2 =(m 1 +m 2)υ (2.40)

откуда
(2.41)

здесь υ 1 и υ 2 - скорости взаимодействующих шаров до удара; υ - их скорость после удара.

Направления векторов скоростей в общем случае определяются правилом : скорости положительны, если направлены вдоль оси ОХ, и отрицательны, если направлены противоположно.

Рассмотрим несколько частных случаев.

1. Если массы шаров равны (m 1 = m 2), то из (2.45) получим

(2.42)

2. Удар шара о стенку. Неподвижное тело (стенка) (υ 2 = 0) значительно массивнее шара (m 2 » m 1), тогда

(2.43)

т.е. налетевшее тело остановится после абсолютно неупругого удара, при этом υ 2 считаем не слишком большой.

При абсолютно неупругом ударе механическая энергия шаров не сохраняется, так как в системе действуют диссипативные силы и происходит потеря кинетической энергии, в результате чего механическая энергия системы уменьшается, переходя во внутреннюю энергию ΔЕ сталкивающихся тел (которые при этом нагреваются). Но закон сохранения полной энергии выполняется, т.е. сумма всех видов энергии замкнутой системы тел до и после столкновений остаётся неизменной:

(2.44)

Абсолютно упругий удар . Так называется столкновение тел, в результате которого не происходит соединения тел в одно целое и их внутренние энергии остаются неизменными. При абсолютно упругом ударе сохраняется не только импульс, но и механическая энергия системы.

К абсолютно упругому удару можно применить закон сохранения механической энергии:

(2.45)

где m 1 и m 2 - массы взаимодействующих шаров; υ 1 , υ 2 – их скорости до удара; u 1 , u 2 - после удара.

По тем же причинам, которые были изложены для абсолютно неупругого удара, к этому случаю можно применить и закон сохранения импульса:

m 1 υ 1 + m 2 υ 2 = m 1 u 1 + m 2 u 2 (2.46)

Решая совместно уравнения (2.49) и (2.50), получим

(2.47)

(2.48)