Водяной лёд на Марсе находится неглубоко. Производство льда, ледяная пещера, искусственный лед, генератор льда, пищевой лед, кусочки льда, ледяной дом, кубики льда, ледяная вода Шутовская свадьба в Ледяном доме

Находящееся агрегатном состоянии, которому свойственно иметь газообразную или жидкую форму при комнатной температуре. Свойства льда начали изучать сотни лет назад. Около двухсот лет тому назад ученые обнаружили, что вода - не простое соединение, а сложный химический элемент, состоящий из кислорода и водорода. После открытия формула воды стала иметь вид Н 2 О.

Строение льда

Н 2 О состоит из двух атомов водорода и одного атома кислорода. В спокойном состоянии водород располагается на вершинах атома кислорода. Ионы кислорода и водорода должны занимать вершины равнобедренного треугольника: кислород располагается на вершине прямого угла. Такое строение воды называется диполем.

Лед состоит на 11.2% процента из водорода, а остальное - это кислород. Свойства льда зависят от его химического строения. Иногда в нем присутствуют газообразные или механические образования - примеси.

Лед встречается в природе в виде немногочисленных кристаллических видов, которые устойчиво сохраняют свое строение при температурах от нуля и ниже, но при нуле и выше он начинает плавиться.

Структура кристаллов

Свойства льда, снега и пара совершенно разные и зависят от В твердом состоянии Н 2 О находится в окружении четырех молекул, расположенных в углах тетраэдра. Так как координационная численность низкая, то лед может иметь ажурную структуру. Это отображается на свойствах льда и его плотности.

Формы льда

Лед относится к распространенным в природе веществам. На Земле есть следующие его разновидности:

  • речной;
  • озерный;
  • морской;
  • фирновый;
  • глетчерный;
  • грунтовый.

Есть лед, напрямую образующийся сублимационным путем, т.е. от парообразного состояния. Такой вид принимает скелетовидную форму (мы их называем снежинки) и агрегатов дендритного и скелетного роста (изморозь, иней).

Одной из самых распространенных форм являются сталактиты, т. е. сосульки. Они растут по всему миру: на поверхности Земли, в пещерах. Этот вид льда образуется путем стекания капель воды при разнице температур около нуля градусов в осенне-весенний период.

Образования в виде ледяных полос, появляющихся по краям водоемов, на границе воды и воздуха, а также по краю луж, называются ледяными заберегами.

Лед может образовываться в пористых грунтах в виде волокнистых прожилок.

Свойства льда

Вещество может находиться в разных состояниях. Исходя из этого, возникает вопрос: а какое свойство льда проявляется в том или ином состоянии?

Ученые выделяют физические и механические свойства. Каждое из них имеет свои особенности.

Физические свойства

К физическим свойствам льда относят:

  1. Плотность. В физике неоднородная среда представлена пределом отношения массы вещества самой среды к объему, в котором она заключена. Плотность воды, как и других веществ, является функцией температур и давления. Обычно в расчетах используют постоянную плотность воды, равную 1000 кг/м 3 . Более точный показатель плотности учитывается только тогда, когда необходимо очень точно провести расчеты ввиду важности получаемого результата разности плотностей.
    При проведении расчетов плотности льда учитывается, какая вода стала льдом: как известно, плотность соленой воды выше, чем дистиллированной.
  2. Температура воды. Обычно происходит при температуре ноль градусов. Процессы замерзания происходят скачками с выделением теплоты. Обратный процесс (таяние) происходит при поглощении того же количества тепла, которое было выделено, но без скачков, а постепенно.
    В природе встречаются условия, при которых происходит переохлаждение воды, но она не замерзает. Некоторые реки сохраняют жидкое состояние воды даже при температуре -2 градуса.
  3. количество теплоты, которое поглощается при нагревании тела на каждый градус. Есть удельная теплоемкость, которая характеризуется количеством теплоты, необходимой для нагрева килограмма дистиллированной воды на один градус.
  4. Сжимаемость. Еще одно физическое свойство снега и льда - сжимаемость, влияющая на уменьшение объема под воздействием повышенного внешнего давления. Обратная величина называется упругостью.
  5. Прочность льда.
  6. Цвет льда. Это свойство зависит от поглощения света и рассеивания лучей, а также от количества примесей в замерзшей воде. Речной и озерный лед без посторонних примесей виден в нежно-голубом свете. Морской лед может быть совершенно другим: голубым, зеленым, синим, белым, коричневым, иметь стальной оттенок. Иногда можно увидеть черный лед. Такой цвет он приобретает из-за большого количества минералов и различных органических примесей.

Механические свойства льда

Механические свойства льда и воды определяются сопротивлением воздействию внешней среды по отношению к единице площади. Механические свойства зависят от структуры, солености, температуры и пористости.

Лед - это упругое, вязкое, пластичное образование, но бывают условия, при которых он становится твердым и очень хрупким.

Морской лед и пресноводный различаются: первый намного пластичнее и менее прочный.

При прохождении кораблей обязательно учитываются механические свойства льда. Также это важно при использовании ледяных дорог, переправ и не только.

Вода, снег и лед обладают схожими свойствами, которые определяют характеристики вещества. Но в то же время на эти показания влияют и многие другие факторы: температура окружающей среды, примеси в твердом веществе, а также исходный состав жидкости. Лед - это одно из самых интересных веществ на Земле.

Лёд – это хорошо известное, для большинства из нас, твердое состояние воды, которое мы можем встретить в естественных природных условиях. В быту мы часто пользуемся его уникальными свойствами.

Он образуется при понижении температуры воды ниже 0 градусов по Цельсию. Эта температура называется температурой Кристаллизации воды. лёд, как и снег, состоит из кристаллов льда, с формами которых вы можете ознакомиться в нашей статье .

Приведем несколько точных определений.

Большой Энциклопедический словарь

Лед — вода в твердом состоянии. Известны 11 кристаллических модификаций льда и аморфный лед. В природе обнаружена только одна форма льда — с плотностью 0,92 г/см³, теплоемкостью 2,09 кДж/(кг.К) при 0°C , теплотой плавления 324 кДж/кг, которая встречается в виде собственно льда (материкового, плавающего, подземного), снега и инея. На Земле ок. 30 млн. км³ льда. Используется для хранения, охлаждения пищевых. продуктов, получения пресной воды, в медицине.

Большой Энциклопедический словарь. 2000

Морской словарь

Лёд имеет меньшую плотность, чем жидкая вода, поэтому он и не тонет. Это свойство аномальное, как правило, большинство веществ, в твердом состоянии имеет большую плотность. Меньшая плотность льда говорит о том, что вода при замерзании увеличивается в объеме. Этот факт необходимо учитывать в быту. Например, если замерзнет водопровод, то образовавшийся в процессе этого лёд может «порвать» трубы, что, в принципе, всем хорошо известно.

Перечислим наиболее значимые свойства льда (некоторые их них мы уже описали выше).

Свойства льда

  • Температура образования льда — 0°C;
  • Объем льда больше объёма жидкой воды, т. е. плотность льда меньше плотности жидкой воды, удельный вес льда при 0° = 0,917 и соответственно удельный вес воды при 0° = 0,9999;
  • При дальнейшем понижении температуры, лёд сжимается, чем и объясняются трещины на больших лёдовых пространствах;
  • Теплоемкость льда ниже, чем у воды практически в 2 раза;
  • Температура замерзания морской воды выше чем пресной и равняется ~ 1,80С (при условии солености воды на уровне средне-взвешенного уровня по мировому океану) .

Лёд и его разновидности

  • Почвенный лёд – лёд, образовавшийся в границах земной коры;
  • Речной лёд;
  • Льды, образовавшиеся при замерзании озер;
  • Морские льды.

Применение льда

Лёд имеет большое хозяйственное применение. Он используется для понижения температуры продуктов питания, что существенно повышает срок их хранения. Вполне очевидно, что в этом контексте особое значение имеет производство искусственного льда, или если можно так сказать искусственного холода. Также лёд широко используется в медицине, для обеспечения и проведения ряда некоторых специфических процедур. Широко используют кубики льда в косметических процедурах и в кулинарии, особенно при приготовлении напитков.

Лёд является строительным материалом для таких важных для нашей планеты объектов как ледники, которые являются индикаторами и регуляторами многих процессов происходящих на нашей планете. Ледникам посвящена наша публикация –

Работа 1

Снежинки как явление физики

Работу выполнил Холодяков Даниил


Цели: узнать больше о снежинках с точки зрения МКТ

Задачи: разобраться в природе образования снежинок

1. Формирование снежинок

2. Формы снежинок

3. Симметрия кристаллов

4. Одинаковые снежинки

5. Цвет и свет

6. Дополнительные материалы

1. Вы когда-нибудь смотрели на снежинку и задавались вопросом, как она формируется и почему она отличается от других видов снега, увиденных вами ранее?

Снежинки - это особая форма водяного льда. Снежинки образуются в облаках, которые состоят из водяного пара. Когда температура стоит на отметке 32 ° F (0 ° C) или холоднее, воды превращается из жидкой формы в лед. Несколько факторов влияют на образование снежинок. Температура, воздушные потоки, влажность - всё это имеет влияние на их форму и размер. Грязь и пыль могут смешиваться в воде и изменять вес и долговечность кристаллов. Частицы грязи делают снежинку тяжелее, способны сделать ее подверженной таянью и могут вызвать трещины и разрывы в кристалле. Формирование снежинки является динамическим процессом. Снежинка может столкнуться со многими различными условиями окружающей среды, иногда плавясь, иногда вырастая - структура снежинки постоянно меняется.

2. Каковы наиболее распространенные формы снежинки?

Как правило, шестиугольные кристаллы формируются в высоких облаках;иглы или плоские шестисторонние кристаллы - в облаках средней высоты, а также широкое разнообразие шестисторонних форм формируются в низких облаках. Более холодные температуры создают снежинки с более резкими наконечниками по бокам кристаллов и могут привести к ветвлениям стрелок. Снежинки, появляющиеся в более теплых условиях, растут медленнее, что приводит к более гладкой и менее сложной форме.

0; -3 ° C - Тонкие гексагональные пластинки

3; -6° C - Иглы

6; -10 ° C - Полые колонны

10; -12 ° C - Секторные пластины (шестиугольники с углублениями)

12; -15 ° C - Дендриты (кружевные шестиугольные формы)

3. Почему снежинки симметричны?

Во-первых, не все снежинки одинаковы со всех сторон. Неровные температуры, наличие грязи и другие факторы могут привести к тому, что снежинка станет однобокой. Тем не менее, это правда, что многие снежинки симметричны и очень сложны в строении. Это потому, что форма снежинки отражает внутренний порядок молекул воды. Молекулы воды в твердом состоянии, например, снега и льда, образуют слабые связи (так называемые водородные связи) друг с другом. Эти упорядоченные механизмы приводят к симметричной, гексагональной форме снежинки. При кристаллизациимолекулы воды подчиняются максимальной силе притяжения, а силы отталкивания сводятся к минимуму. Следовательно, молекулы воды выстраиваются в заданных пространствах в определенном расположении, таком,чтобы занять пространство и сохранить симметрию.

4. Правда ли что не существует двух одинаковых снежинок?

И да, и нет. Никогда две снежинки не будут идентичны, вплоть до точного числа молекул воды, спина электронов, изотопов водорода и кислорода и т.д. С другой стороны, две снежинки могут выглядеть одинаково, и любая снежинка, вероятно, имела свой прототип в какой-то момент истории. Структура снежинки постоянно меняется в соответствии с условиями окружающей среды и под воздействием множества факторов,поэтому кажется маловероятным увидеть две одинаковых снежинки.

5. Если вода и лед прозрачны, то почему снег выглядит белым?

Короткий ответ состоит в том, что снежинки имеют так много светоотражающих поверхностей, что они рассеивают свет во всех его цветах, поэтому снег кажется белым. Длинный ответ связан с тем, как человеческий глаз воспринимает цвет. Даже несмотря на то, что источник света не может иметь по-настоящему «белый» цвет (например, солнечный свет, люминесцентные и лампы накаливания все имеют определенный цвет), человеческий мозг компенсирует источник света. Таким образом, даже при том, что солнечный свет желтый, и рассеянный от снега свет тоже желтый, мозг видит снег максимального белого цвета, потому что вся картина, полученная мозгом имеет желтый оттенок, который автоматически вычитается.

Выводы:

1. Снежинки - это особая форма водяного льда.

2. Температура, воздушные потоки, влажность - факторы влияющие на форму и размер снежинки.

3. Именно порядок молекул воды определяет симметричность снежинки.

им в реальных снежных кристаллах.

Работа 2

Лед и вода в природе .

Работу выполнила Гусева Алина

Цель :узнать что-нибудь новое.

Задачи :

Рассмотретьзначенияводы в природе;

Разобраться в свойствах и видах воды;

Ознакомиться с основными свойствами водного льда;

Расширить свои знания относительно воды в целом.

Вода (оксид водорода) - бинарное неорганическое соединение, химическая формула Н2O. Молекула воды состоит из двух атомов водорода и одного - кислорода, которые соединены между собой ковалентной связью. При нормальных условиях представляет собой прозрачную жидкость, не имеющую цвета, запаха и вкуса. В твёрдом состоянии называется льдом, снегом или инеем, а в газообразном - водяным паром. Вода также может существовать в виде жидких кристаллов.

Около 71 % поверхности Земли покрыто водой (океаны, моря, озёра, реки, льды) - 361,13 млн км2. На Земле примерно 96,5 % воды приходится на океаны, (1,7 % мировых запасов составляют грунтовые воды, ещё 1,7 % на ледники и ледяные шапки Антарктиды и Гренландии, небольшая часть в реках, озёрах и болотах, и 0,001 % в облаках). Большая часть земной воды - солёная, и она непригодна для сельского хозяйства и питья. Доля пресной воды составляет около 2,5 %.

Вода является хорошим сильнополярным растворителем. В природных условиях всегда содержит растворённые вещества (соли, газы). Вода имеет ключевое значение в создании и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды. Является важнейшим веществом для всех живых существ на планете Земля.

В атмосфере нашей планеты вода находится в виде капель малого размера, в облаках и тумане, а также в виде пара. При конденсации выводится из атмосферы в виде атмосферных осадков (дождь, снег, град, роса). Вода чрезвычайно распространённое вещество в космосе, однако из-за высокого внутрижидкостного давления вода не может существовать в жидком состоянии в условиях вакуума космоса, отчего она представлена только в виде пара или льда.

Виды воды .

Вода на Земле может существовать в трёх основных состояниях - жидком, газообразном и твёрдом и приобретать различные формы, которые могут одновременно соседствовать друг с другом: водяной пар и облака в небе, морская вода и айсберги, ледники и реки на поверхности земли, водоносные слои в земле. Воду нередко подразделяют на типы по различным принципам. По особенностям происхождения, состава или применения, выделяют, в числе прочего: мягкую и жесткую воду - по содержанию катионов кальция и магния. По изотопам водорода в молекуле: лёгкую (по составу почти соответствует обычной), тяжёлую(дейтериевая), сверхтяжёлую вода (тритиевая). Также выделяют: пресную, дождевую, морскую, минеральную, солоноватую, питьевую, водопроводную, дистиллированную, деионизированную,апирогенную, святую, структурированную, талую, подземные, сточные и поверхностные воды.

Физические свойства.

Вода в нормальных условиях сохраняет жидкое агрегатное состояние , тогда как аналогичные водородные соединения являются газами (H2S, CH4, HF). Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По этой причине молекула воды обладает большим дипольным моментом (D = 1,84, уступает только синильной кислоте). При температуре перехода в твёрдое состояние молекулы воды упорядочиваются, в процессе этого объёмы пустот между молекулами увеличиваются и общая плотность воды падает, что и объясняет причину меньшей плотности воды в фазе льда . При испарении, напротив, рвутся все связи. Разрыв связей требует много энергии, отчего у воды самая большая удельная теплоёмкость среди прочих жидкостей и твёрдых веществ. Для того чтобы нагреть один литр воды на один градус, требуется затратить 4,1868 кДж энергии. Благодаря этому свойству вода нередко используется как теплоноситель. Помимо большой удельной теплоёмкости, вода также имеет большие значения удельной теплоты плавления (при 0 °C - 333,55 кДж/кг) и парообразования (2250 кДж/кг).

Вода обладает также высоким поверхностным натяжением среди жидкостей, уступая в этом только ртути. Относительно высокая вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями. Вода является хорошим растворителем полярных веществ . Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода, а отрицательно заряженные - атомы водорода. Поскольку молекула воды мала по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества.Вода обладает отрицательным электрическим потенциалом поверхности .

Чистая вода - хороший изолятор . Поскольку вода - хороший растворитель , в ней практически всегда растворены те или иные соли, то есть в воде присутствуют положительные и отрицательные ионы. Благодаря этому вода проводит электричество. По электропроводности воды можно определить её чистоту.

Вода имеет показатель преломления n=1,33 в оптическом диапазоне. Однако она сильно поглощает инфракрасное излучение, и поэтому водяной пар является основным естественным парниковым газом, отвечающим более чем за 60 % парникового эффекта.

Лёд - вода в твёрдом агрегатном состоянии. Льдом иногда называют некоторые вещества в твёрдом агрегатном состоянии, которым свойственно иметь жидкую или газообразную форму при комнатной температуре; в частности, сухой лёд, аммиачный лёд или метановый лёд.

Основные свойства водного льда .

В настоящее время известны три аморфных разновидности и 15 кристаллических модификаций льда. Ажурная кристаллическая структура такого льда приводит к тому, что его плотность,(равная 916,7 кг/м при 0 °C), ниже плотности воды (999,8 кг/м) при той же температуре. Поэтому вода, превращаясь в лёд, увеличивает свой объём примерно на 9 %. Лёд, будучи легче жидкой воды, образуется на поверхности водоёмов, что препятствует дальнейшему замерзанию воды.

Высокая удельная теплота плавления льда, равная 330 кДж/кг, служит важным фактором в обороте тепла на Земле. Так, чтобы растопить 1 кг льда или снега, нужно столько же тепла, сколько требуется, чтобы нагреть литр воды на 80 °C. Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного), а также в виде снега, инея и т. д. Под действием собственного веса лёд приобретает пластические свойства и текучесть. Природный лёд обычно значительно чище, чем вода, так как при кристаллизации воды в первую очередь в решётку встают молекулы воды.

При нормальном атмосферном давлениивода переходит в твердое состояние при температуре в 0 °C и кипит (превращается в водяной пар) при температуре 100 °C. При снижении давления температура таяния (плавления) льда медленно растёт, а температура кипения воды - падает. При давлении в 611,73 Па (около 0,006 атм) температура кипения и плавления совпадает и становится равной 0,01 °C. Такие давление и температура называются тройной точкой воды . При более низком давлении вода не может находиться в жидком состоянии, и лёд превращается непосредственно в пар. Температура сублимации льда падает со снижением давления. При высоком давлении существуют модификации льда с температурами плавления выше комнатной.

При росте давления плотность водяного пара в точке кипения тоже растёт, а жидкой воды - падает. При температуре 374 °C (647 K) и давлении 22,064 МПа (218 атм) вода проходит критическую точку . В этой точке плотность и другие свойства жидкой и газообразной воды совпадают. При более высоком давлении и/или температуре исчезает разница между жидкой водой и водяным паром. Такое агрегатное состояние называют «сверхкритическая жидкость ».

Вода может находится в метастабильных состояниях - пересыщенный пар, перегретая жидкость, переохлаждённая жидкость. Эти состояния могут существовать длительное время, однако они неустойчивы и при соприкосновении с более устойчивой фазой происходит переход. Например, можно получить переохлаждённую жидкость, охладив чистую воду в чистом сосуде ниже 0 °C, однако при появлении центра кристаллизации жидкая вода быстро превращается в лёд.

Факты .

В среднем в организме растений и животных содержится более 50 % воды.

В составе мантии Земли воды содержится в 10-12 раз больше, чем количество воды в Мировом океане.

Если бы все ледники растаяли, то уровень воды в земных океанах поднялся бы на 64 м и около 1/8 поверхности суши было бы затоплено водой.

Иногда вода замерзает при положительной температуре.

При определённых условиях (внутри нанотрубок) молекулы воды образуют новое состояние, при котором они сохраняют способность течь даже при температурах, близких к абсолютному нулю.

Вода отражает 5 % солнечных лучей, в то время как снег - около 85 %. Под лёд океана проникает только 2 % солнечного света.

Синий цвет чистой океанской воды объясняется избирательным поглощением и рассеянием света в воде.

С помощью капель воды из кранов можно создать напряжение до 10 киловольт, опыт называется «Капельница Кельвина».

Вода - это одно из немногих веществ в природе, которые расширяются при переходе из жидкой фазы в твёрдую.

Выводы:

Вода сохраняет жидкое агрегатное состояние, обладает большим дипольным моментом, большой удельной теплоемкостью, значением парообразования, высоким поверхностным натяжением, отрицательным электрическим потенциалом поверхности, является хорошим изолятором и растворителем.

Литература

1. Вода // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). - СПб., 1890-1907.

2. Лосев К. С. Вода. - Л.: Гидрометеоиздат, 1989. - 272 с.

3. Гидробионты в самоочищении вод и биогенной миграции элементов. - М.: МАКС-Пресс. 2008. 200 с. Предисловие члена-корр. РАН В. В. Малахова. (Серия: Наука. Образование. Инновации. Выпуск 9). ISBN 978-5-317-02625-7.

4. О некоторых вопросах поддержания качества воды и её самоочищения // Водные ресурсы. 2005. т. 32. № 3. С. 337-347.

5. Андреев В. Г. Влияние протонного обменного взаимодействия на строение молекулы воды и прочность водородной связи. Материалы V Международной конференции «Актуальные проблемы науки в России». - Кузнецк 2008, т.3 С. 58-62.

Учёные, анализирующие данные с Красной планеты, утверждают: есть все основания считать, что Phoenix раскопал то, зачем летел — водяной лёд под тонким слоем грунта. Доказательство — сублимация яркого материала, который оказался открыт при удалении верхнего пласта почвы.

Последние дни на Марсе для американского зонда сложились непросто. Исследователи приступили к анализу образцов грунта. Причём им пришлось преодолеть ряд трудностей. О частично заклинившей дверце печки мы рассказывали . Но это было только начало.

Когда пробы всё же высыпали в щель, оказалось, что почва Марса какая-то слипшаяся. Большие крупинки цепляются друг за друга, и ни одна не желает попадать в печь. Дело в том, что отверстие печки прикрыто защитной сеткой с отверстиями по одному миллиметру. Исследователи рассчитывали нагревать (чтобы выполнить анализ образовавшихся газов) именно такие небольшие песчинки.

Позже был придуман способ «переупрямить» грунт. Ковш робота заставили вибрировать над открытой печкой, так, чтобы самые мелкие частицы марсианской породы понемногу ссыпались в печь. Аналогично образцы песка были доставлены и в микроскоп.

Кстати, слипание грунта учёные объясняют присутствием очень мелких частиц, заполняющих промежутки между более крупными гранулами, возможно, вместе с неким компонентом, играющим роль цемента.

Образец марсианского песка в микроскопе. Масштабная линейка - один миллиметр (фото NASA/JPL-Caltech/University of Arizona).

Проба, попавшая в микроскоп, продемонстрировала около тысячи отдельных частиц, многие из которых — в десять раз меньше диаметра человеческого волоса.

Исследователи говорят, что увидели тут, по меньшей мере, четыре разных минерала. К примеру, там есть большие чёрные стекловидные частицы и маленькие красные.

Эксперты полагают, что этот набор отражает историю грунта — кажется, что первоначальные частицы вулканического происхождения за счёт выветривания сократились в размерах до крупинок с более высокой концентрацией железа.

Теперь относительно льда. "Подозрения" у учёных появились ещё в начале июня. Но нагрев первой пробы в печке признаков водяного пара не выявил.

Зато исследователи Марса получили доказательства присутствия льда благодаря снимкам траншеи «Додо-Златовласка» (Dodo-Goldilocks), вырытой роботом ранее (вернее, это сначала были две соседние траншеи, которые позже соединили в одну, отсюда и двойное имя). Несколько светлых комочков почвы, присутствующих вначале, исчезли на более поздних кадрах.

«Это должен быть лёд, - заявил научный руководитель миссии Питер Смит (Peter Smith) из университета Аризоны (University of Arizona, Tucson). — Эти комки практически полностью исчезли в течение нескольких дней, что есть идеальное доказательство того, что это — лёд. Ранее высказывалась идея, что яркие материалы — это соль. Но соль испариться не может».

Вверху: траншея Dodo-Goldilocks, отснятая 13 июня. Ширина этой выемки составляет 22, а длина 35 сантиметров. Наибольшая глубина (участок в нижней части кадра) достигает 8 сантиметров. Внизу: кадры, снятые уже 15 и 18 июня (20-й и 24-й сол миссии). Светлые участки становятся меньше, а в левом нижнем углу траншеи исчезает несколько гранул светлого материала (фотографии NASA/JPL-Caltech/University of Arizona/Texas A&M University).

Также при рытье ряда траншей вокруг аппарата рука робота наткнулась на жёсткий грунт под сравнительно тонким слоем мягкого. Причём примерно на одной и той же глубине во всех траншеях.

Сегодня мы будем говорить про свойства снега и льда. Стоит уточнить, что лед образуются не только из воды. Кроме водяного льда бывает аммиачный и метановый. Не так давно ученые изобрели сухой лед. Свойства его уникальны, их рассмотрим чуть позже. Он образуется при замораживании углекислоты. Свое название сухой лёд получил благодаря тому, что при таянии он не оставляет луж. Находящийся в его составе углекислый газ тут же испаряется в воздух из замороженного состояния.

Определение льда

Прежде всего, подробнее рассмотрим лед, который получают из воды. Внутри него правильная кристаллическая решетка. Лед - это распространенный природный минерал, получаемый во время замерзания воды. Одна молекула этой жидкости связывается с четырьмя ближайшими. Ученые заметили, что такое внутреннее строение присуще различным драгоценным камням и даже минералам. Например, такое строение имеет алмаз, турмалин, кварц, корунд, берилл и другие. Молекулы удерживаются на расстоянии кристаллической решеткой. Эти свойства воды и льда говорят о том, что плотность такого льда будет меньше плотности воды, благодаря которой он образовался. Поэтому лед плавает на поверхности воды и не тонет в ней.

Миллионы квадратных километров льда

А вы знаете, сколько льда на нашей планете? Согласно последним исследованиям ученых, на планете Земля имеется примерно 30 миллионов квадратных километров замороженной воды. Как вы уже догадались, основная масса этого природного минерала находится на полярных шапках. В некоторых местах толщина ледяного покрова достигает 4 км.

Как получить лед

Сделать лед совсем несложно. Этот процесс не составит большого труда, как и не требует особых навыков. Для этого необходима низкая температура воды. Это единственное неизменное условие процесса образования льда. Вода замерзнет тогда, когда ваш термометр покажет температуру ниже 0 градусов по Цельсию. В воде начинается процесс кристаллизации благодаря низким температурам. Молекулы ее строятся в интересную упорядоченную структуру. Этот процесс называют образованием кристаллической решетки. Он одинаков и в океане, и в луже, и даже в морозильной камере.

Исследования процесса замерзания

Проводя исследование на тему замерзания воды, ученые пришли к выводу, что кристаллическая решетка выстраивается в верхних слоях воды. На поверхности начинают образовываться микроскопические ледяные палочки. Чуть позже между собой они смерзаются. Благодаря этому образуется тончайшая пленка на поверхности воды. Крупные водоемы замерзают намного дольше по сравнению с неподвижной водой. Это связано с тем, что ветер колышет и колеблет поверхность озера, пруда или реки.

Ледяные блины

Ученые провели ещё одно наблюдение. Если при низкой температуре продолжается волнение, то тончайшие пленки собираются в блины диаметром около 30 см. Далее они смерзаются в один слой, толщина которого не меньше 10 см. На ледяные блины сверху и снизу намерзает новый слой льда. Так образуется толстый и прочный ледяной покров. Его прочность зависит от видов: самый прозрачный лед будет в несколько раз прочнее белого льда. Экологи заметили, что 5-сантиметровый лёд выдерживает вес взрослого человека. Слой в 10 см способен выдержать легковую машину, но следует помнить, что выходить на лед в осеннее и весеннее время очень опасно.

Свойства снега и льда

Физики и химики долгое время изучали свойства льда и воды. Самое известное, а также важное свойство льда для человека - это его способность легко таять уже при нулевой температуре. Но для науки важны и другие физические свойства льда:

  • лед обладает прозрачностью, поэтому он хорошо пропускает солнечный свет;
  • бесцветность - лед не имеет цвета, но его с легкостью можно покрасить при помощи цветных добавок;
  • твердость - ледяные массы прекрасно сохраняют форму без каких-либо наружных оболочек;
  • текучесть - это частное свойство льда, присущее минералу только в некоторых случаях;
  • хрупкость - кусок льда можно с легкостью расколоть, не прикладывая больших усилий;
  • спайность - лед с легкостью раскалывается в тех местах, где он сросся по кристаллографической линии.

Лед: свойства вытеснения и чистоты

По своему составу у льда высокая степень чистоты, так как кристаллическая решетка не оставляет свободного места различным посторонним молекулам. Когда вода замерзает, то она вытесняет различные примеси, которые в ней когда-то растворились. Таким же образом можно получить очищенную воду в домашних условиях.

Но некоторые вещества способны затормаживать процесс замерзания воды. Например, соль в морской воде. Лёд в море образуется только при очень низких температурах. Удивительно, но процесс замерзания воды каждый год способен поддерживать самоочищение от разных примесей в течение многих миллионов лет подряд.

Секреты сухого льда

Особенности этого льда в том, что в своём составе он имеет углерод. Такой лед образуется только при температуре -78 градусов, но тает он уже при -50 градусах. Сухой лед, свойства которого позволяют пропустить стадию жидкостей, при нагревании сразу образуется пар. Сухой лед, как и его собрат - водяной, не имеет запаха.

А вы знаете, где применяют сухой лед? Благодаря его свойствам, этот минерал используют при транспортировке продуктов питания и медикаментов на дальние расстояния. А гранулы этого льда способны потушить воспламенение бензина. Ещё, когда сухой лед тает, он образует густой туман, поэтому его применяют на съемочных площадках для создания спецэффектов. Помимо всего перечисленного, сухой лед можно брать с собой в поход и в лес. Ведь когда он тает, то отпугивает комаров, различных вредителей и грызунов.

Что касается свойств снега, то эту удивительную красоту мы можем наблюдать каждую зиму. Ведь каждая снежинка имеет форму шестигранника - это неизменно. Но помимо шестиугольной формы, снежинки могут выглядеть по-разному. На формирование каждой из них влияет влажность воздуха, атмосферное давление и другие природные факторы.

Свойства воды, снега, льда удивительны. Важно знать ещё несколько свойств воды. Например, она способна принимать форму сосуда, в который ее наливают. При замерзании вода расширяется, а также у нее есть память. Она способна запоминать окружающую энергетику, а при замерзании она «сбрасывает» информацию, которую в себя впитала.

Мы рассмотрели природный минерал - лед: свойства и его качества. Продолжайте изучать науку, это очень важно и полезно!