Преобразование одной энергии в другую. Прямое преобразование энергии

Электрическая энергия вырабатывается на электрических станциях и передается потребителям главным образом в виде переменного трехфазного тока промышленной частоты 50 Гц. Однако как в промышленности, так и на транспорте имеются установки, для питания которых переменный ток частотой 50 Гц непригоден.
Вопросами, связанными с преобразованием электрической энергии из одного ее вида в другой, занимается область науки и техники, получившая название преобразовательной техники (или энергетической электроники). К числу основных видов преобразования электрической энергии относятся:

    1. Выпрямление переменного тока - преобразование переменного тока (обычно промышленной частоты) в постоянный ток. Этот вид преобразования получил наибольшее развитие, так как часть потребителей электрической энергии может работать только на постоянном токе (электрохимические и электрометаллургические установки, линии передачи постоянного тока, электролизные ванны, заряжаемые аккумуляторные батареи, радиотехническая аппаратура и т.д.), другие же потребители имеют на постоянном токе лучшие характеристики, чем на переменном токе (регулируемые электродвигатели).
    2. Инвертирование тока - преобразование постоянного тока в переменный. Инвертор применяется в тех случаях, когда источник энергии генерирует постоянный ток (электромашинные генераторы постоянного тока, аккумуляторные батареи и другие химические источники тока, солнечные батареи, магнитогидродинамические генераторы и т.д.), а для потребителей нужна энергия переменного тока. В ряде случаев инвертирование тока необходимо при других видах преобразования электрической энергии (преобразование частоты, преобразование числа фаз).
    3. Преобразование частоты - преобразование переменного тока одной частоты (обычно 50 Гц) в переменный ток другой частоты. Такое преобразование необходимо для питания регулируемых электроприводов переменного тока, установок индукционного нагрева и плавки металлов, ультразвуковых устройств и т. д.
    4. Преобразование числа фаз. В ряде случаев встречается необходимость в преобразовании трехфазного тока в однофазный (например, для питания дуговых электропечей) или, наоборот, однофазного в трехфазный. Так, на электрифицированном транспорте используется контактная сеть однофазного переменного тока, а на электровозах используются вспомогательные машины трехфазного тока. В промышленности используются трехфазно-однофазные преобразователи частоты с непосредственной связью, в которых наряду с преобразованием промышленной частоты в более низкую происходит и преобразование трехфазного напряжения в однофазное.

3. Преобразование постоянного тока одного напряжения в постоянный ток другого напряжения (преобразование постоянного напряжения). Подобное преобразование необходимо, например, на ряде подвижных объектов, где источником электроэнергии является аккумуляторная батарея или другой источник постоянного тока низкого напряжения, а для питания потребителей требуется более высокое постоянное напряжение (например, источники питания радиотехнической или электронной аппаратуры).
Существуют и некоторые другие виды преобразования электрической энергии (например, формирование определенной кривой переменного напряжения), в частности, формирование мощных импульсов тока, которые находят применение в специальных установках, регулируемое преобразование переменного напряжения. Все виды преобразований осуществляют с использованием силовых ключевых элементов. Основные типы полупроводниковых ключей - диоды, силовые биполярные транзисторы, тиристоры, запираемые тиристоры, транзисторы с полевым управлением.
Преобразователи на тиристорах принято делить на две группы: ведомые и автономные. В первых периодический переход тока с одного вентиля на другой (коммутация тока) осуществляется под действием переменного напряжения какого-либо внешнего источника. Если таким источником является сеть переменного тока, говорят о преобразователе, ведомом сетью. К таким преобразователям относятся: выпрямители, ведомые сетью (зависимые) инверторы, непосредственные преобразователи частоты, преобразователи числа фаз, преобразователи переменного напряжения. Если внешним источником напряжения, обеспечивающим коммутацию, является машина переменного тока (например, синхронный генератор или двигатель), преобразователь называют ведомым машиной.
Автономные преобразователи выполняют функции преобразования формы или регулирования напряжения (тока) путем изменения состояния управляемых силовых ключевых элементов под действием сигналов управления. К автономным преобразователям относятся импульсные регуляторы постоянного и переменного напряжения, некоторые виды инверторов напряжения.
Традиционно силовые вентильные преобразователи использовались для получения выпрямленного напряжения промышленных сетей частотой 50 Гц и для получения переменного напряжения (однофазного или трехфазного) при питании от источника постоянного напряжения. Для этих преобразователей (выпрямителей и инверторов) используют диоды и тиристоры, коммутируемые с частотой сети. Форма выходного напряжения и тока определяется линейной частью схемы и фазовой модуляцией угла регулирования.
Выпрямление и инвертирование продолжают оставаться ведущим способом преобразования электрической энергии, однако способы преобразования претерпели значительные изменения и их разновидности стали гораздо многочисленнее.
Появление новых типов силовых полупроводниковых вентилей, близких к идеальному управляемому ключевому элементу, существенно изменило подход к построению вентильных преобразователей. Получившие распространение в последние годы запираемые тиристоры (GTO - gate turn off thirystor) и биполярные транзисторы с изолированным затвором (БТИЗ - IGBT - insolated gate bipolar transistor) успешно перекрывают диапазон мощностей до сотен и тысяч киловатт, их динамические свойства непрерывно совершенствуются, а стоимость с ростом выпуска снижается. Поэтому они успешно вытеснили обычные тиристоры с узлами принудительной коммутации. Области применения импульсных преобразователей напряжения с новыми классами приборов также расширились. Быстро развиваются мощные импульсные регуляторы как для повышения, так и для понижения постоянного напряжения питания; импульсные преобразователи часто используются в системах утилизации энергии возобновляемых источников (ветер, солнечная радиация).

Большие вложения делаются в производство энергии с использованием энергосберегающих технологий, когда возобновляемые первичные источники используются либо для возврата энергии в сеть, либо для подзарядки накопителя (аккумулятора) в установках с повышенной надежностью энергоснабжения. Появляются новые классы преобразователей для электроприводов с вентильно-индукторными двигателями (SRD - switched reluctanse drive). Эти преобразователи представляют собой многоканальные (число каналов обычно от трех до восьми) коммутаторы, обеспечивающие поочередно подключение обмоток статора двигателя с регулируемыми частотой и напряжением. Импульсные преобразователи получают широкое распространение в источниках питания бытовой аппаратуры, зарядных устройствах, сварочных агрегатах и целом ряде новых применений (пускорегулирующие устройства осветительных установок, электрофильтры и пр.).
Помимо совершенствования элементной базы силовых преобразовательных цепей на стратегию решения схемотехнических задач оказало огромное влияние развитие микроконтроллерных устройств и цифровых методов обработки информации.

Электрические машины разделяют по назначению на два основных вида: электрические генераторы и электрические двигатели . Генераторы предназначены для выработки электрической энергии, а электродвигатели - для приведения в движение колесных пар локомотивов, вращения валов вентиляторов, компрессоров и т. п.

В электрических машинах происходит процесс преобразования энергии. Генераторы преобразуют механическую энергию в электрическую. Это означает, что для работы генератора надо вращать его вал каким-либо двигателем. На тепловозе, например, генератор приводят во вращение дизелем, на тепловой электростанции - паровой турбиной, на гидроэлектростанции - водяной турбиной. Электрические двигатели, наоборот, преобразуют электрическую энергию в механическую. Поэтому для работы двигателя его надо соединить проводами с источником электрической энергии, или, как говорят, включить в электрическую сеть.
Принцип действия любой электрической машины основан на использовании явлений электромагнитной индукции и возникновения электромагнитных сил при взаимодействии проводников с током и магнитного поля. Эти явления имеют место при работе как генератора, так и электродвигателя. Поэтому часто говорят о генераторном и двигательном режимах работы электрических машин .
Во вращающихся электрических машинах в процессе преобразования энергии участвуют две основные части: якорь и индуктор со своими обмотками, которые перемещаются относительно друг друга. Индуктор создает в машине магнитное поле; в обмотке якоря индуцируется э. д. с. и возникает ток. При взаимодействии тока в обмотке якоря с магнитным полем создаются электромагнитные силы, посредством которых реализуется процесс преобразования энергии в машине.

Принцип действия электрического генератора. Простейшим электрическим генератором является виток, вращающийся в магнитном поле (рис. 67, а). В этом генераторе виток 1 представляет собой обмотку якоря. Индуктором служат постоянные магниты 2, между которыми вращается якорь 3. При вращении витка с некоторой частотой вращения п его стороны (проводники) пересекают магнитные силовые линии потока Фив каждом проводнике индуцируется э. д. с. е . При принятом на рис. 67, а направлении вращения якоря э. д. с. в проводнике, расположенном под южным полюсом, согласно правилу правой руки направлена от нас, а э.д.с. в проводнике, расположенном под северным полюсом,- к нам. Если подключить к обмотке якоря приемник электрической энергии 4, то по замкнутой цепи пойдет электрический ток i. В проводниках обмотки якоря ток I будет направлен так же, как и э. д. с. е .

Выясним, почему для вращения якоря в магнитном поле приходится затрачивать механическую энергию, получаемую от дизеля или турбины (первичного двигателя). Как было установлено в главе II, при прохождении тока I по расположенным в магнитном поле проводникам на каждый проводник действует электромагнитная сила F. При указанном на рис. 67, а направлении тока согласно правилу левой руки на проводник, расположенный под южным полюсом, будет действовать сила F, направленная влево, а на проводник, расположенный под северным полюсом,- сила F, направленная вправо. Указанные силы создают совместно электромагнитный момент М, направленный по часовой стрелке.
Из рассмотрения рис. 67, а видно, что электромагнитный момент М, возникающий при отдаче генератором электрической энергии, направлен в сторону, противоположную вращению проводников, поэтому он является тормозным моментом , стремящимся замедлить вращение якоря генератора. Для того чтобы предотвратить остановку якоря, требуется к валу якоря приложить внешний вращающий момент М вн, противоположный моменту М и равный ему по величине. С учетом же трения и других внутренних потерь в машине внешний вращающий момент должен быть больше электро-

магнитного момента М, созданного током нагрузки генератора. Следовательно, для продолжения нормальной работы генератора к нему необходимо подводить извне механическую энергию - вращать его якорь каким-либо двигателем 5.

При отсутствии нагрузки (при разомнутой внешней цепи генератора) имеет место режим холостого хода генератора. В этом случае от дизеля или турбины требуется только такое количество механической энергии, которое необходимо для преодоления трения и компенсации других внутренних потерь энергии в генераторе. При увеличении нагрузки генератора, т. е. отдаваемой им электрической мощности Р эл, увеличиваются ток i, проходящий по проводникам обмотки якоря, и создаваемый им тормозящий момент М. Следовательно, должна быть соответственно увеличена и механическая мощность Р мх, которую генератор должен получить от дизеля или турбины, для продолжения нормальной работы.

Таким образом, чем больше электрической энергии потребляется, например, электродвигателями тепловоза от тепловозного генератора, тем больше механической энергии забирает он от вращающего его дизеля и тем больше топлива необходимо подавать дизелю.

Из рассмотренных выше условий работы электрического генератора следует, что характерным для него является:

совпадение по направлению тока i и э. д. с е в проводниках обмотки якоря; это указывает на то, что машина отдает электрическую энергию;

возникновение электромагнитного тормозного момента М, направленного против вращения якоря; из этого вытекает необходимость получения машиной извне механической энергии.

Принцип действия электрического двигателя. Принципиально электродвигатель выполнен так же, как генератор. Простейший электродвигатель представляет собой виток 1 (рис. 67,6), расположенный на якоре 3, который вращается в магнитном поле полюсов 2. Проводники витка образуют обмотку якоря. Если подключить виток к источнику электрической энергии, например к электрической сети 6, то по каждому его проводнику начнет проходить электрический ток i. Этот ток, взаимодействуя с магнитным полем полюсов, создает электромагнитные силы F. При указанном на рис. 67, б направлении тока на проводник, расположенный под южным полюсом, будет действовать сила F, направленная вправо, а на проводник, лежащий под северным полюсом,- сила F, направленная влево. В результате совместного действия этих сил создается электромагнитный вращающий момент М, направленный против часовой стрелки, приводящий якорь с проводником во вращение с некоторой частотой п. Если соединить вал якоря с каким-либо механизмом или устройством 7 (колесной парой тепловоза или электровоза, станком и пр.), то электродвигатель будет приводить это устройство во вращение, т. е. отдавать ему механическую энергию. При этом внешний момент М вн, создаваемый этим устройством, будет направлен против электромагнитного момента М.

Выясним, почему при вращении якоря электродвигателя, работающего под нагрузкой, расходуется электрическая энергия. Как было установлено, при вращении проводников якоря в магнитном поле в каждом проводнике индуцируется э. д. с, направление которой определяется по правилу правой руки; следовательно, при указанном на рис. 67, б направлении вращение э. д. с. е, индуцированная в проводнике, расположенном под южным полюсом, будет направлена от нас, а э. д. с. е, индуцированная в проводнике, расположенном под северным полюсом, будет направлена к нам. Из рис. 67, б видно, что э. д. с. е, индуцированные в каждом проводнике, направлены против тока i, т. е. они препятствуют его прохождению по проводникам.

Для того чтобы ток i продолжал проходить по проводникам якоря в прежнем направлении, т. е. чтобы электродвигатель продолжал нормально работать и развивать требуемый вращающий момент, необходимо приложить к этим проводникам внешнее напряжение U, направленное навстречу э. д. с. и большее по величине чем суммарная э. д. с. E, индуцированная во всех последовательно соединенных проводниках обмотки якоря. Следовательно, необходимо подводить к электродвигателю из сети электрическую энергию.

При отсутствии нагрузки (внешнего тормозного момента, приложенного к валу двигателя) электродвигатель потребляет от внешнего источника (сети) небольшое количество электрической энергии и по нему проходит небольшой ток холостого хода. Эта энергия расходуется на покрытие внутренних потерь мощности в машине.

При возрастании нагрузки увеличивается потребляемый электродвигателем ток и развиваемый им электромагнитный вращающий момент. Следовательно, увеличение механической энергии, отдаваемой электродвигателем при возрастании нагрузки, вызывает автоматически увеличение электроэнергии, забираемой им от источника.

Из рассмотренных выше условий работы электрического двигателя следует, что характерным для него является:

совпадение по направлению электромагнитного момента М и частоты вращения п; это характеризует отдачу машиной механической энергии;

возникновение в проводниках обмотки якоря э. д. с. е, направленной против тока i и внешнего напряжения U. Из этого вытекает необходимость получения машиной извне электрической энергии.

Принцип обратимости электрических машин. Рассматривая принцип действия генератора и электродвигателя, мы установили, что устроены они одинаково и что в основе работы этих машин много общего. Процесс преобразования механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе связан с индуцированием э. д. с. во вращающихся в магнитном поле проводниках обмотки якоря и возникновением электромагнитных сил в результате взаимодействия магнитного поля и проводников с током. Отличие генератора от электродвигателя заключается только во взаимном направлении э. д. с, тока, электромагнитного момента и частоты вращения.

Обобщая рассмотренные процессы работы генератора и электродвигателя, можно установить принцип обратимости электрических машин. Согласно этому принципу любая электрическая машина может работать и генератором и электродвигателем и переходить из генераторного режима в двигательный и наоборот.

Для выяснения этого положения рассмотрим работу электрической машины постоянного тока при различных условиях. Если внешнее напряжение U больше суммарной э. д. с. Г. во всех последовательно соединенных проводниках обмотки якоря, то ток I будет проходить в указанном на рис. 68, а направлении и машина будет работать электродвигателем, потребляя из сети электрическую энергию и отдавая механическую. Однако если по какой-либо причине э. д. с. Е станет больше внешнего напряжения U, то ток I в обмотке якоря изменит свое направление (рис. 68, б) и будет совпадать с э. д. с. Е. При этом изменится и направление электромагнитного момента М, который будет направлен против частоты вращения п. Совпадение по направлению э. д. с. E и тока Iозначает, что машина стала отдавать в сеть электрическую энергию, а появление тормозного электромагнитного момента М говорит о том, что она должна потреблять извне механическую энергию. Следовательно, когда э. д. с. Е, индуцированная в проводниках обмотки якоря, становится больше напряжения сети U, машина переходит из двигательного режима работы в генераторный, т. е. при E < U машина работает двигателем, при Е > U - генератором.

Перевод электрической машины из двигательного режима в генераторный можно осуществить различными способами: уменьшая напряжение U источника, к которому подключена обмотка якоря, или увеличивая э. д. с. E в обмотке якоря.

Домашнее задание c. 15-17, 83-97. c. 308-310.

Энергия, от греческого слова energeia – деятельность или действие, - общая мера различных видов движения и взаимодействия.

В естествознании различают следующие виды энергии: механическую, тепловую, электрическую, химическую, магнитную, электромагнитную, ядерную, гравитационную. Современная наука не исключает существование и других видов энергии.

Энергия – плод мысли человека, созданный для описания различных явлений природы.

Энергия измеряется в Джоулях (Дж). Для измерения тепловой энергии используют калории, 1 кал=4.18 Дж, электрическую энергию измеряют в кВт*час=3.6*10 6 Дж=3.6 МДж, механическая энергия измеряется в кг*м, 1кг*м=9.8 Дж.

Различают энергию макромира, микромира и внутреннюю энергию.

Кинетическая энергия – результат изменения состояния движения материальных тел.

Потенциальная энергия – результат изменения положения частей данной системы.

Способы преобразования энергии:

Закон сохранения энергии – энергия не создается и не уничтожается, она переходит из одного вида в другой. Различают энергию упорядоченного движения (свободную – механическую, химическую, электрическую, электромагнитную, ядерную) и энергию хаотического движения – теплоту.

В настоящее время нет способов непосредственного превращения ядерной энергии в электрическую и механическую, нужно вначале пройти стадию превращения энергии в тепловую, а затем в механическую и электрическую.

Современная наука выделяет 4 силы, определяющие все многообразие мира: сила тяготения, электромагнитные и ядерные – сильные и слабые. Каждая из этих сил характеризуется мировой постоянной:

Сила тяготения -  g =6*10 -39 .

Электромагнитные силы -  е =1/137.

Сильные ядерные взаимодействия -  S =1.

Слабые ядерные взаимодействия -  w =3*10 -12 .

Из этих констант получаются все остальные физические постоянные.

Более 20 млрд. лет назад образовалась Вселенная, энергия «большого взрыва» - «родила» энергию, которая составляет основу нашей жизни, она «родила» Солнце и Землю. Энергия Солнца привела к образованию на Земле запасов топливных ресурсов, заставляет постоянно перемещаться водяные и воздушные массы на Земле. Тепловая энергия горячего ядра Земли также участвует в круговороте веществ и превращении энергии.

Человечество стремилось с начала своей истории овладеть энергией в своих интересах. Этапы «овладения» энергией:

  1. мускульная сила животных,

    сила ветра, воды,

    энергия пара

    электроэнергия

    ядерная энергия.

Во Вселенной происходят процессы преобразования энергии из одного вида в другой в огромных масштабах. Человечество находится в самом начале пути понимания этих процессов.

Механическая энергия преобразуется в тепловую – трением, в химическую – путем разрушения структуры вещества, сжатия, в электрическую – путем изменения электромагнитного поля генератора.

Тепловая энергия преобразуется в химическую, в кинетическую энергию движения, а эта – в механическую (турбина), в электрическую (термо э.д.с.)

Химическая энергия может быть преобразована в механическую (взрыв), в тепловую (тепло реакции), в электрическую (батарейки).

Электрическая энергия может быть преобразована в механическую (электромотор), в химическую (электролиз), в электромагнитную (электромагнит).

Электромагнитная энергия – энергия Солнца – в тепловую (нагрев воды), в электрическую (фотоэффект → гелиоэнергетика), в механическую (звонок телефона).

Ядерная энергия → в химическую, тепловую, механическую (взрыв), регулируемое деление (реактор) → химическая + тепловая.

Термодинамическое преобразование энергии, с кпд близким к 100%, реально

В. Михайлюк

В процессе преобразования химической энергии топлива в механическую энергию машин, нагрев рабочего тела (р.т.), иными словами накачка молекул р.т. кинетической энергией, производится с целью увеличения давления р.т. в рабочих цилиндрах, камерах сгорания. Только перепад давления, разделённый поршнем (в других типах двигателей между камерой сгорания и точкой сброса отработанного р.т.) приводит к возникновению результирующей, направленной в сторону низкого давления. Перепад температур, не является необходимым условием для работы двигателя. Вполне реальна работа двигателя в условиях, когда температура окружающей атмосферы будет выше температуры в рабочем цилиндре. Ни какого теплообмена во время совершения рабочего цикла нет. Само понятие тепло является наследием калорической теории и не соответствует молекулярной теории газообразной фазы состояния вещества. Никогда в рабочем цикле не было холодильников. Холодильник самостоятельная машина, служащая для регенерации и подготовки рабочего тела. Подготовьте запас рабочего тела получаемого с его помощью и смело отключайте его, машина будет работать. Но реаниматоры “второго начала” утверждают, роль холодильника играет более холодная атмосфера. Чтобы убедиться в абсурдности этого утверждения направьте выхлоп двигателя (можно своего автомобиля), последовательно, в пламя костра и в сосуд Дьюара, на поверхность жидкого азота. Убедились в том, что нет зависимости от температуры, и необходимости в холодильнике. Но, если перекрыть отводной канал (выхлоп), то в связи с исчезновением перепада давления произойдёт почти мгновенная остановка двигателя, к аналогичным последствиям приводит декомпрессия. Нагрев р.т., это способ съёма энергии получаемой в результате химической (ядерной) реакции топлива, с целью получения высокого давления р.т., и дальнейшим преобразованием в механическую энергию. Мы повышаем температуру р.т., за счёт энергии топлива, с целью повышения его давления до уровня кондиционного. Именно так. При температуре р.т.8000К достигаем давления в рабочих цилиндрах 25Мпа. Температуру р.т.8000К мы можем получить и при давлении 0,1Мпа, только турбины не сдвинутся с места. Где теплообмен, основа рассуждений Карно, в результате которых он сделал заключение о невозможности термодинамических преобразований с к.п.д. близким к 100%? Где холодильники, без которых невозможно преобразование энергии? Карно пошёл по пути средневековых философов, употребляя лишь слово тепло вместо “теплород”. Всё остальное как у них: тепловые резервуары, тепло течёт …. Энергетическое состояние молекул, составляющих физический объект, определяется кинетической энергией поступательного, вращательного и колебательного движений этих молекул. Количественной мерой средней кинетической энергии молекул составляющих объект является его температура. Она однозначно определяет энергетическое состояние объектов, представленных в жидкой и твёрдой фазах вещества, имеющих постоянный объём. В газообразном состоянии, объект занимает объём предоставленного пространства. Поэтому однозначно, одной температурой, энергетическое состояние объекта определяться не может. В этом случае, общая внутренняя энергия объекта, в количественном отношении, в первую очередь определяется плотностью энергии или удельной энергией, т.е. количеством внутренней энергии приходящейся на единичный объём. Температура, в этом случае, приобретает свойства качественной характеристики.

Рассмотрим уравнение Клапейрона-Менделеева:

PV = m/μ R T, запишем в виде: i/2 PV = i/2 m/μ RT;

правая часть этого уравнения, есть внутренняя энергия идеального газа W;

Следовательно W = i/2 PV, или W/V =i/2 P,

но W/V есть ничто иное как плотность внутренней энергии газа, которую обозначим W0, тогда:

W0 = i/2 P, т.е. плотность внутренней энергии газа равна давлению газа умноженному на половину числа степеней свободы газа i, дж/м3 (обратите внимание при сокращении на м мы получаем н/м2 или паскаль). Непосредственному измерению она не подлежит, но легко вычисляется через давление газа. Вот почему решающим, скорее единственным, фактором определяющим энергоёмкость рабочего объёма, является давление газа.

Для всех ныне известных тепловых двигателей от паровозного до ракетного (объединим их под названием термодинамические преобразователи 1го рода), характерно прохождение рабочим телом 3х следующих стадий, во время совершения рабочего цикла:

Накачка р.т. внутренней энергией или его нагрев, с целью увеличения плотности энергии, т.е. повышения давления.

Адиабатическое расширение р.т. с преобразованием внутренней энергии р.т. в механическую энергию машин. Движущийся со стороны преобладающего давления поршень (или другой рабочий орган), наращивающий свою кинетическую энергию от каждого превалирующего столкновения молекул р.т., со стороны рабочего цилиндра, является признаком происходящего преобразования. При таких столкновениях с поршнем, молекулы р.т. отдают ему часть скорости, импульса, энергии, в результате они и всё работающее р.т., естественно, охлаждаются. Снижение температуры р.т. и соответствующее ему уменьшение его внутренней энергии - признак совершения механической работы на такую же величину.

Сброс отработанного р.т., производится в момент, рассчитанный конструктором двигателя, когда, по его мнению, дальнейшее преобразование энергии становится нерентабельным для данной конструкции. До этого момента энергетические потери всех известных двигателей близки к 0, т.е. к.п.д. около 100%. Только в момент сброса отработанного р.т., вместе с ним утилизируется энергия равная разности энергии сбрасываемого р.т. и его энергии перед началом нагрева.

Никаких холодильников. Для повторения циклов берутся новые порции р.т., и с ними совершаются те же действия. И только если мы решили, что более рациональной будет регенерация отработанного р.т., с целью повторного его использования, мы производим сброс отработанного р.т. в холодильник. Холодильник является обособленной машиной прямо не связанной с работой двигателя, его задачей является подготовка р.т. к повторному использованию. Как видим, логика исследований Карно построена на средневековом представлении природы явлений, понятии тепла (теплорода). Потому и результат таков, что он не разобрался даже в том, что нагрев производится для повышения давления. Вывод о невозможности полного преобразования энергии в полезную работу бездоказателен и абсурден, но именно этот запрет является ярлыком “изобретателя вечного двигателя”, хотя и второго рода. Он отбросил технический прогресс человечества на многие годы. Мы с энтузиазмом взялись за решение проблемы управляемого термоядерного синтеза, ведь энергоёмкость термоядерного топлива в 5 раз превосходит ядерное, при одинаковой массе. Но то, что ядерное топливо более чем в миллион раз превосходящее по энергоёмкости лучшее химическое топливо, не выиграло конкуренции, мы проигнорировали, без единой попытки разобраться в причинах этого, далеко неординарного случая. На суперсовременных АЭС утилизируется 60% энергии распада топлива и только 40% преобразуется в электроэнергию, т.е. по назначению. Следуя по указанному Карно ложному пути, оптимисты с надеждой и умилением смотрят на гейзеры и другие горячие источники, как на альтернативу тепловым электростанциям, (как же, есть завещанный Карно перепад температур). Но если бы они измерили температуру пара на выходе из турбин в так называемый холодильник …, думаю, начался бы поиск вредителей. АЭС вызывают чувство потенциальной опасности у граждан, не смотря на то, что на них не возможен ядерный взрыв. Реальная опасность их в том, что в случаях технических аварий возможны утечки радиоактивных веществ, тепловой взрыв, и в случаях выброса в атмосферу продуктов распада, это может привести к радиоактивному заражению местности. Отсюда вывод: АЭС должны находиться глубоко под землёй, в скальных породах. Но помеха этому необходимость в охлаждающих резервуарах, которые принимают 60% энергии сгораемого топлива.

Суть выше изложенного, состоит в отрицании 2го начала термодинамики, неприемлемости его положений и утверждении других закономерностей, происходящих вовремя термодинамического преобразования энергии. Второе начало неприемлемо, т.к. в излагаемых, во 2ом начале, утверждениях употребляется понятие “тепло” идущее в разрез с общепризнанной моделью молекулярного строения веществ. Энергетическое состояние газообразного объекта определяется двумя параметрами температурой и давлением (плотностью энергии). Носителями этой энергии является совокупность молекул составляющих объект.

Восприятие внутренней энергии как самостоятельного объекта, а не как параметров частиц составляющих его, привело к созданию ошибочных теорий с “теплородом” и являющимся ему аналогом “теплом”. В свою очередь, “тепло”, как объект, требовало правило о возможных направлениях перемещения. Для тех, кто видит мир молекулярным, не требуется дополнительных пояснений о том, куда будет стремиться избыток кинетической энергии молекул в случаях неравномерного её распределения в пространстве.

Второе начало неприемлемо, т.к. декларирует невозможность полного превращения “тепла” в работу по причине обязательного наличия холодильника и неизбежных, в связи с этим потерь в нём. Но элементарные опыты отрицают необходимость в них на всех стадиях рабочего цикла. Полнота преобразования энергии топлива(химической, ядерной), в механическую энергию машин, не имеет объективных ограничений и зависит лишь от степени совершенства механизма преобразования..

Cамое парадоксальное противоречие второго начала состоит в том, что Карно, пытаясь обосновать невозможность полного превращения тепла в механическую энергию, представил свою знаменитую формулу η = (Тн – То) / Тн, прямо доказывающую обратное.

Для этого принимаем температуру нагревателя равной Тн = 8000К (5270С),

а температуру холодильника равной Т0 = 40К(температура жидкого гелия).

Тогда получим η = 0,995.

Охлаждая более доступным жидким азотом,

получим η = (800 – 77)/800 = 0,904.

Во втором случае кпд несколько дальше от 100%, но согласитесь, 90,4% стало бы сенсацией. Так что именно Карно является “отцом вечного двигателя второго рода”. Но обольщаться не стоит. Этого результата вы никогда не получите, потому что второе начало это клубок сплошных ошибок. Если быть откровенным, то мной, при том гораздо раньше, была разработана теория, термодинамического преобразователя 2го рода, с к.п.д. преобразования близким к 100%, на основании положений молекулярно кинетической теории газов и современной физики. Но это было незаконное дитя. В течении длительного периода времени я тщетно пытался доказать, что второе начало законно только для “паровозной технологии”, пока не обнаружил причину, которая меня шокировала …. Оказалось, что 2ое начало базируется, на ошибочных предположениях и утверждениях, что и было выше изложено. Даже анализ работы двигателя Карно заменил анализом движения поршня в цилиндре, под действием нагретого пара, а затем вернул его в исходное положение, путем охлаждения пара в цилиндре, что противоречит даже ему самому. Таких двигателей никогда не существовало. Р.т. не может охлаждаться из вне, в рабочем цикле.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://sciteclibrary.ru/

Поступающая по линиям электропередач энергия не всегда используется в чистом виде. Для выполнения специфических задач она преобразуется электротехническими устройствами, изменяющими один или несколько параметров – вид напряжения, частоту и другие.

Преобразователи электроэнергии: классификация

Эти устройства классифицируются по нескольким признакам:

  1. Виду преобразований.
  2. Типу конструкции.
  3. Управляемости.

Параметры, которые изменяются

Преобразованию подвергаются следующие параметры:

  1. Тип напряжения – из переменного в постоянное и наоборот.
  2. Амплитудные значения тока и напряжения.
  3. Частота.

Типы конструкций

Эти устройства подразделяются на электромашинные и полупроводниковые.

Электромашинные (вращательные) состоят из двух машин, одна – привод, а другая – исполнительное устройство. Например, для превращения переменного тока в постоянный используется асинхронный двигатель переменного тока (привод) и генератор постоянного (исполнитель). Их недостаток – большие габариты и масса. Кроме того, суммарный КПД технологической связки ниже, чем у одиночной электрической машины.

Полупроводниковые (статические) преобразователи, строятся на основе электротехнических схем, состоящих из полупроводниковых или ламповых элементов. Их КПД выше, размеры и масса небольшие, но качество электроэнергии на выходе невысокое.

Управляемые и неуправляемые

Если величина изменения параметра электрической энергии фиксированная, то используется неуправляемый преобразователь. Такие устройства применяются в первых каскадах блоков питания. Пример – силовой трансформатор, понижающий сетевое напряжение с 220 до 12 вольт.

Преобразователи с изменяемыми параметрами являются исполнительными устройствами в управляемых электротехнических цепях. Например, изменяя частоту питающего напряжения, регулируют частоту вращения асинхронных двигателей.

Преобразователи электроэнергии: примеры устройств

Преобразователи могут выполнять либо какую-то одну функцию, либо несколько.

Изменение типа напряжения

Те устройства, которые превращают переменный ток в постоянный называются выпрямителями. Действующие наоборот – инверторами.

Если это электромашинное устройство, то выпрямитель состоит из асинхронного двигателя переменного тока, вращающего ротор генератора постоянного. Входные и выходные линии электрического контакта не имеют.

Наиболее распространенных тип схемы статического выпрямителя – диодный мост. В нем четыре элемента (диода) с односторонней проводимостью, включенные встречно. После него обязательно ставят электролитический конденсатор, который сглаживает пульсирующее напряжение.

Существует гибридная конструкция, объединяющая электромашинный и статический выпрямители. Это автомобильный генератор, являющийся машиной переменного тока, статорные обмотки которого подключены к выпрямительному мосту с конденсатором.

Инверторные схемы применяются для запуска генератора незатухающих колебаний (мультивибратор), построенного на тиристорах или транзисторах. Они являются основой преобразователей частоты.

Изменение амплитудных значений

Это все виды трансформаторов – понижающих, повышающих, балластных.

Управляемые трансформаторы называются реостатами. Если они включаются параллельно источнику электроэнергии, то изменяют напряжение. Последовательно – ток.

Для поглощения тепла, выделяющегося при работе мощных высоковольтных сетевых трансформаторов, применяются системы жидкостного (масляного) охлаждения.

Изменение частоты

Частотные преобразователи бывают как электромашинными (вращательными), так и статическими.

Исполнительным механизмом вращательных преобразователей частоты является высокочастотный асинхронный трехфазный генератор. Его ротор вращает электромотор постоянного или переменного тока. Как и у выпрямителя вращательного типа, входные и выходные линии у него не имеют электрического контакта.

Инверторные схемы, используемые в преобразователях частоты статического типа, бывают управляемые и неуправляемые. Повышение частоты позволяет уменьшить габариты устройств. Трансформатор с рабочей частотой в 400 Гц в восемь раз меньше, чем работающий от 50 Гц. Это свойство используется для построения компактных сварочных инверторов.